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We propose an information-theoretic model for the transport of waves through a chaotic cavity in the
presence of absorption. The entropy of Beatrix statistical distribution is maximized, with the constraint
(Tr SS)=an: nis the dimensionality o6, and O<a<1, a=0(1) meaning completéno) absorption. For
strong absorption our result agrees with a number of analytical calculations already given in the literature. In
that limit, the distribution of the individualangulaj transmission and reflection coefficients becomes expo-
nential (Rayleigh statistics even forn=1. Forn>1 Rayleigh statistics is attained even with no absorption;
here, we extend the study to<1. The model is compared with random-matrix-theory numerical simulations:
it describes the problem very well for strong absorption, but fails for moderate and weak absorptions. Thus, in
the latter regime, some important physical constraint is missing in the construction of the model.

PACS numbes): 05.45-a, 42.25.Bs, 41.20.Jb

Systems involving multiple elastic scattering of any kind some relevant information is missed in our model.
of waves(sound, microwaves, or lightwhose interference The scattering of waves through a cavity can be described
leads to strong fluctuations in the transmitted intensity, cafy an S matrix that relates incoming and outgoing ampli-
be described in very much the same way as electron systentsides. The dimensionality of the matrix is the total number
However, there exists an important difference: the interferof channels in all the waveguides. For twd-channel
ence pattern for classical waves can be affected as a result wlveguidesn=2N and theS matrix has the structure
loss orabsorption which is absent in electron systems. The
issue is extremely important from an experimental point of
view, because absorption is always present and is often very S=
strong. For diffusive transport the problem was intensively
studied both experimentalfyl] and theoretically2—-4]. The ) ) )
issue has also attracted attention in connection with thaherer,r’ andt,t” are theN-dimensional matrices of reflec-
phase-coherent reflection of light by a disordered mediuntion and_ transmission amplitudes with incidence from either
which amplifies radiatiofi5,6] and the study of the relation Waveguide.
between absorption and dephasif@,7]. The analytical In quantum mechanics, the universality classesSara-
evaluation of the reflection-matrix statistical distribution for trices were introduced by Dysd®,10]. In the absence of
a semi-infinite disordered waveguide was performed, for arany Symmetries, the only restriction @is unitarity, SS

: @

bitrary absorption, in Ref(5], and that of theS-matrix dis- =, due to flux conservatiofthe unitary or 8=2 casg. In
tribution for a chaotic cavity with absorption and one propa-the orthogonalcase 3=1), Sis symmetric because of ei-
gating mode in each of two waveguides, in Réf. ther time-reversal invarianag@RI) and integral spin, or TRI,

In the present paper we take up again the problem of th@alf-integral spin, and rotational symmetry. In thyemplectic
propagation of scalar waves traveling through a cavitycase 8=4), Sis self-dual because of TRI with half-integral
whose classical dynamics would be chaotic, in the presencgpin and no rotational symmetry. The intuitive ideaegfial-
of absorption, connected to the outside through a number d&-priori probabilities is expressed mathematically by time
waveguides supporting arbitrary number of propagating Vvariant measureon the matrix space under the symmetry
modes. Motivated by the success of an information-theoreti@peration for the class in question, giving tbiecular or-
approacH 8] to the study of chaotic scattering through cavi- thogonal, unitary, and symplectic ensembl€OE, CUE,
ties, we propose below an extension of such models to studySE.
the effect of absorption. Since these models are based on the Consider the orthogonal case. The potential appearing in
idea of doing statistics directly on ti&matrix of the system the Schrainger equation is real, with a strengtp, say. The
(on the basis of the information which is physically relevantresulting S matrix is unitary, SS=1, and symmetric,S
for the problem in questionwe believe that the present ap- =S'. Suppose we analytically continug to complex val-
proach complements the analytical derivations mentionedies: uy=uy—iug, the sign of the imaginary part ensuring
above. We show that the two approaches agree in the limit cibsorption. Because of loss of flux, the resultgs now
strong absorption, while for moderate and weak absorptiosubunitary meaning that the eigenvalues of the Hermitian
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matrix h=S9 lie in the interval between zero and one. where the constar€ and the Lagrange multiplier ensure
However, thesymmetryproperty,S=S', is not altered. We normalization and the fulfilment of the constrai(®). The
still speak of the orthogonald=1) case. For the unitary limit of no absorption@=1, is attained when the Lagrange
one, a similar analytic continuation gives a subunitary and irmultiplier v— —o and the distribution concentrates on the
general nonsymmetri€ matrix. In the scattering problem of unitarity sphere. The limit of complete absorptien-0, is
scalar classical waves, the orthogonal case is the physicalpttained whenv— +«: the distribution then becomes &
relevant one. However, we deal below with bg@k-1 and  function at the origin and there is no exit signal. The result of
2, the unitary case being presented as a reference problemg. (7), a Laguerre ensemble for the variab}és coincides,

as it is often simpler to treat mathematically than the or-for strong absorption, with that obtained in REB] for the

thogonal one. diffusive waveguide and in Ref7] for cavities withN=1.
Following Ref.[11], we introduce ainiform weight in the The “ansatz” (7) entails a number of properties and re-
space of sub-unitary matricess strictions. From Egs(4) and (3), and the properties of
du(U) [13], we see that, under the distributi¢n), the av-
dul®(s)=col —SHIT dxapdYap, (2) erage (S)=0. Therefore, applications of the modé€r)
ab should be restricted to cases whepeompt processes

_ _ _ ~are absent and s@S)=0 [12,14,4. We shall see at the
whereS,p=XaptiYap; Ilap is over all elements in the uni- end of the paper that for uniform volume absorptién
tary case, but, in the orthogonal one, only ogetb. In this  guantum mechanics, a constant potenti@W throughout
equation, the step functiof(H) (for a HermitianH) is non-  the cavity the S matrix can be obtained from that without
zero forH>0 (i.e., for H pOSitive deﬁnite, so that all its absorption, eva|uating it at the Comp|ex ene@in’ ie.,
eigenvalues are positive definitend thus selectsubunitary S(E+iW). The so-called analyticity-ergodicity require-

matrices. n Mp o\ ;
ments(Saibl~ . ’Sasz>_<sa1bl>nl’ . '(Sapbp>“p are discussed

A complexnXxn subunitary matrix can be written in the : X .
polar representatior(Refs.[11] and[7]) as in Ref.[12] for unitary matrices: the same argument applies
here as well, and the necessity to fulfill them follows. In the
S=uUDV. 3 present case, their fulfillment follows from Ed3), (4), and

(3), and the properties afu(U) [13].
The unitary matriced) and V are arbitrary in the unitary As a brief excursion into the situation whéB)# 0, we
case, whileV=UT in the orthogonal one. The matrR is  note that, asV increasesS(E+iW)—(S), which, in turn, is
diagonal, with the structureD,,=p,d,, (a=1,...n), the so called “optical matrix,” that signals the presence of
with O0=<p,=<1. prompt or direct processd42,14,§. As a consequence
The explicit expression of the above meas{®ein terms  for large absorption, does not tend to zero, bu¢$p. With
of the independent parameters of the polar representé&jon no absorption, the splitting=(S)+S" describes the prob-
is (Ref. [11]) lem in terms of two responses, associated with two distinct
N time scales: the prompt and the equilibrated one. It is then
expected that strong absorption will affect the former re-
d“(sﬁ)b(s):};[b |p§_pk2>|ﬁ1:[ pedpcdu(U)du(V), (4) sponse, that corresponds to short trajectories, much less then
the latter one, that arises from long chaotic trajectories.
wheredu(U) anddu(V) are the invariant measure for the ~ We analyze some of the consequences of the arigatz
unitary group inn dimensions;du (V) is absent in the or- and, at the end, compare them with the results of random-
thogonal casgg=1. matrix-theory(RMT) numerical simulations.
More general statistical distributions of subunitary matri- a. The n=1 case.This case, which describes a cavity
ces carrying more information than the eqaapriori prob-  with one waveguide supporting only one open chan@sis(
ability (2) can now be constructed usinige.,(S) as a start-  thus the reflection amplitude back to the only channel we

ing point and writing have, is, within our model(7), independent of the universal-
ity class 8. Equation(3) for Sin the polar representation
dP(S)=p(S)dusuS). (5)  reduces toS=p expi#; p? represents the reflection coeffi-

) ) . cientR. The uniform weight(4) and the distribution(7) re-
In what follows we propose an information-theoretic §,ce to

criterion to choosg(S). Theinformation-theoretic entropy

S of the Smatrix distribution [12], S p(9)] B
=—[p(9)In p(Sdus,dS, is maximized subject to the con- dusu(S)=pdpd,
straint of a given average strength of the absorptibfath- - o
ematically, this is expressed by the average departure fro€ R-probability density is
unitarity of ourS matrices; we thus write the constraint as

dP(S)=Ce "’pdpdd. (8

w(R)=De "R, 0=<R<1, 9
(TrsS)=an, O=a<1. (6)
. D and v being given by
Thus,a=0 corresponds to complete absorption and1 to

lack of absorption. We find L

e’—1

v 1
D= y <R>=;—

Cvress = 10
dP®)(s)=Ce " TSSdulf)(s), %) e @ (10
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FIG. 1. Distribution of the reflection coefficielR for a cavity with one waveguide, supporting one chanfleft) in the presence of
strong absorption(R)= a=0.034);(right) for moderate absorptionR)= a=0.410).

For weak absorptiong~1, v— —c0 and the distributior{9) o?
becomes strongly peaked aroufd=1, i.e., the unitarity (TaW=(Re.p) V=2 ~2[(Tan)™M]?, (15
circle, reducing to the one-sided delta functiéfl — R) as n
a—1. In the other extreme dftrong absorptionv— + oo,

a~1/v. D~1/a and and similarly, (R2,)M~2[(R,,)M]?, the relation between

first and second moments for an exponential distribution

W(R)~(R) e R(R), (11)  With the average valuél2), which becomes smaller as the
absorption increases.
Rayleigh’s distributionwith the averagéR)=a. For no absorption one reaches, in the limit 1, a Ray-

b. The orthogonal case for arbitrary. Jsing the results leigh distribution forR,,. Referenc¢15] shows that, for the
of Ref.[13] we find, for the average of an individuedngu- ~COE (=~ being an approximation for large)

lar) transmission or reflection coefficient WO(R,) = C(1— Raa)(”*?’)’zw(Raa)*1e*Raa’<Raa>.
1= 1= = (1)
(Tap)™'=(Rasp) =@/ (n+1)=(1/2(Raa)™. (12 c. The unitary case for arbitrary.fin the unitary case, the
statistical properties of a transmission coefficient is identical
to that of a diagonal or off-diagonal reflection coefficient.
The following equations are thus written for,. We find,
n for its average(T,,)®=a/n; we have used the resijlt3]
(T2 =(R2, YD =" (|U1| U2 "o(pHH D (|U14®0=1/In. The difference in expectation values be-
a=1 tween the two symmetry classes is thus

We see the occurrence of the familiaackward enhance-
ment factor 2For the second moments we find

n

+2 2 (Ul Uzaf U3,z 20(plp )
100

13 b

The indices 1 and 2 indicate any pair of different channels; 80 K
(---)o stands for an average with respect to the invariant 1
measure of the unitary grodf3]. For (R2,)® one sets the
two indices 1 and 2 equal.

For a two-waveguide problem with one channel in each
waveguide theS matrix is two dimensional {=2N=2).
Equation (12) gives (T)M=a/3(R)YM=24a/3. Restricting
ourselves to the limit ofstrong absorption o<1, the
Lagrange multiplierv=3/2a and we obtain

(Tap M —(Tapy@=—al[n(n+1)]. (16)

60

40

No. of events

20

(T3)B~2(T) 72 (14

Although we have not calculated the statistical distribution 0.00 0.05 010 015
of T, result(14) is consistent with the Rayleigh distribution
for the transmission coefficiefit FIG. 2. Distribution of the transmission coefficiéhfor a cavity
For a large number of channets=2N>1, Egs.(13) and  with two waveguides, each supporting one open channel, in the
(12) give [13] presence of strong absorption € .049).
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For the second moment @f,, we have
<T§b>(2)=227 <|U1a|2|U1y|2>0<|Va2|2|Vy2|2>o<PiPi>

=[2/(n+1)2{[(n—1)/n}(pip3) @+ (2n){p7)®}.
17

We have used the resul{13] (|U;,/?U,[%)0=(1
+ 84,)/[N(N+1)].

For a two-waveguide problem with one channel in eac
waveguide fi=2N=2) we havg(T)(? = /2. In the limit of
strong absorption «<1, the Lagrange multiplien =2/«
and we obtain a relation lik¢l4). For a large number of
channelsn=2N>1, Eq.(17) gives a similar relation, now
for T,,, which is again consistent with Rayleigh’s distribu-
tion.

For CUE(i.e., no absorptionone reaches a Rayleigh dis-
tribution for n>1. Pereyra and Mellp15] find the distribu-
tion of a single transmission coefficient to be

W(Tap)=C (1= Tap)"~2=(Tap) e Tao/Ta). (18)
d. Comparison with numerical simulatianSome of our
predictions are compared below with RMT numerical simu-

lations for 3=1. The S matrices are constructed &E) =
—[1,—iK(E)] I, +iK(E)], with Kabn(E)
=\ avb/[Ex—E] and (p)ap=06ap (a,b=1,... ).
The E,’s are generated from an “unfolded” zero-centere
GOE[16] with average spacing. The v, ,'s are statistically
independent, real, zero-centered Gaussian random variabl
At E=0, (Sap)=—[1+ (¥} A] 1= m(y{a)/ Al Gy,
and we requird S)=0. In the quantum case, addition of a
constant imaginary potentiatiW inside the cavity makes
the E,’s complex and equal t&, —iW (see also Refl7]).

d
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the full S matrix and arbitraryn, we only analyze below
individual (angulaj reflection and transmission coefficients,
for n=1,2.

Figure 1 shows fon=1 the results of the RMT numerical
simulations (as histograms compared with the present
model for the corresponding value af(continuous curves
For strong absorption the model works very well, the agree-
ment with Rayleigh’s law being excellent, while for moder-
ate and weak absorptions the model fails.

Figure 2 shows the distribution of the transmission coef-
ent T obtained from a RMT simulation fon=2. The
agreement with the Rayleigh distribution with the centroid
(T)=al3 is excellent;(R) was also checked and found to
agree with 2v/3.

That individual transmission and reflection coefficients at-
tain a Rayleigh distribution for strong absorption can be un-
derstood as followsS,,(E+iW) coincides[8,12] with the
energy average ofS,,(E) evaluated with a Lorentzian
weighting function of half-widthw. If T'°°"" is the correla-
tion energy, W can be thought of as containing-m
=W/T°°" independent intervals. Ifn>1, by the central-
limit theorem the real and imaginary parts 8f, attain a
Gaussian distribution, an®,,|?> an exponential distribution.
This seems to be the situation captured by the maximum-
entropy approach.

In summary, the results presented in this paper indicate
that wave scattering through classically chaotic cavities in
the presence of strong absorption can be described in terms

é:g an information-theoretic model.
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