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Wave scattering through classically chaotic cavities in the presence of absorption:
An information-theoretic model
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We propose an information-theoretic model for the transport of waves through a chaotic cavity in the
presence of absorption. The entropy of theS-matrix statistical distribution is maximized, with the constraint
^Tr SS†&5an: n is the dimensionality ofS, and 0<a<1, a50(1) meaning complete~no! absorption. For
strong absorption our result agrees with a number of analytical calculations already given in the literature. In
that limit, the distribution of the individual~angular! transmission and reflection coefficients becomes expo-
nential ~Rayleigh statistics!, even forn51. Forn@1 Rayleigh statistics is attained even with no absorption;
here, we extend the study toa,1. The model is compared with random-matrix-theory numerical simulations:
it describes the problem very well for strong absorption, but fails for moderate and weak absorptions. Thus, in
the latter regime, some important physical constraint is missing in the construction of the model.

PACS number~s!: 05.45.2a, 42.25.Bs, 41.20.Jb
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Systems involving multiple elastic scattering of any ki
of waves~sound, microwaves, or light!, whose interference
leads to strong fluctuations in the transmitted intensity,
be described in very much the same way as electron syst
However, there exists an important difference: the interf
ence pattern for classical waves can be affected as a res
loss orabsorption, which is absent in electron systems. T
issue is extremely important from an experimental point
view, because absorption is always present and is often
strong. For diffusive transport the problem was intensiv
studied both experimentally@1# and theoretically@2–4#. The
issue has also attracted attention in connection with
phase-coherent reflection of light by a disordered med
which amplifies radiation@5,6# and the study of the relation
between absorption and dephasing@4,7#. The analytical
evaluation of the reflection-matrix statistical distribution f
a semi-infinite disordered waveguide was performed, for
bitrary absorption, in Ref.@5#, and that of theS-matrix dis-
tribution for a chaotic cavity with absorption and one prop
gating mode in each of two waveguides, in Ref.@7#.

In the present paper we take up again the problem of
propagation of scalar waves traveling through a cav
whose classical dynamics would be chaotic, in the prese
of absorption, connected to the outside through a numbe
waveguides supporting anarbitrary number of propagating
modes. Motivated by the success of an information-theor
approach@8# to the study of chaotic scattering through ca
ties, we propose below an extension of such models to s
the effect of absorption. Since these models are based o
idea of doing statistics directly on theSmatrix of the system
~on the basis of the information which is physically releva
for the problem in question! we believe that the present ap
proach complements the analytical derivations mentio
above. We show that the two approaches agree in the lim
strong absorption, while for moderate and weak absorp
PRE 611063-651X/2000/61~1!/17~4!/$15.00
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some relevant information is missed in our model.
The scattering of waves through a cavity can be descri

by an S matrix that relates incoming and outgoing amp
tudes. The dimensionalityn of the matrix is the total numbe
of channels in all the waveguides. For twoN-channel
waveguides,n52N and theS matrix has the structure

S5F r t 8

t r 8
G , ~1!

wherer ,r 8 andt,t8 are theN-dimensional matrices of reflec
tion and transmission amplitudes with incidence from eith
waveguide.

In quantum mechanics, the universality classes forS ma-
trices were introduced by Dyson@9,10#. In the absence of
any symmetries, the only restriction onS is unitarity, SS†

5I , due to flux conservation~the unitary or b52 case!. In
the orthogonalcase (b51), S is symmetric because of ei
ther time-reversal invariance~TRI! and integral spin, or TRI,
half-integral spin, and rotational symmetry. In thesymplectic
case (b54), S is self-dual because of TRI with half-integra
spin and no rotational symmetry. The intuitive idea ofequal-
a-priori probabilities is expressed mathematically by thein-
variant measureon the matrix space under the symmet
operation for the class in question, giving thecircular or-
thogonal, unitary, and symplectic ensembles~COE, CUE,
CSE!.

Consider the orthogonal case. The potential appearin
the Schro¨dinger equation is real, with a strengthu0, say. The
resulting S matrix is unitary, SS†5I , and symmetric,S
5ST. Suppose we analytically continueu0 to complex val-
ues: u05u082 iu09 , the sign of the imaginary part ensurin
absorption. Because of loss of flux, the resultingS is now
subunitary, meaning that the eigenvalues of the Hermiti
R17 ©2000 The American Physical Society
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matrix h5SS† lie in the interval between zero and on
However, thesymmetryproperty,S5ST, is not altered. We
still speak of the orthogonal (b51) case. For the unitary
one, a similar analytic continuation gives a subunitary and
general nonsymmetricS matrix. In the scattering problem o
scalar classical waves, the orthogonal case is the physic
relevant one. However, we deal below with bothb51 and
2, the unitary case being presented as a reference prob
as it is often simpler to treat mathematically than the
thogonal one.

Following Ref.@11#, we introduce auniform weight in the
space of sub-unitary matricesas

dmsub
(b) ~S!5Cu~ I 2SS†!)

a,b
dxabdyab , ~2!

whereSab5xab1 iyab ; )a,b is over all elements in the uni
tary case, but, in the orthogonal one, only overa<b. In this
equation, the step functionu(H) ~for a HermitianH) is non-
zero for H.0 ~i.e., for H positive definite, so that all its
eigenvalues are positive definite! and thus selectssubunitary
matrices.

A complexn3n subunitary matrix can be written in th
polar representation~Refs.@11# and @7#! as

S5UDV. ~3!

The unitary matricesU and V are arbitrary in the unitary
case, whileV5UT in the orthogonal one. The matrixD is
diagonal, with the structureDab5radab (a51, . . . ,n),
with 0<ra<1.

The explicit expression of the above measure~2! in terms
of the independent parameters of the polar representatio~3!
is ~Ref. @11#!

dmsub
(b) ~S!5 )

a,b

n

ura
22rb

2ub)
c

rcdrcdm~U !dm~V!, ~4!

wheredm(U) anddm(V) are the invariant measure for th
unitary group inn dimensions;dm(V) is absent in the or-
thogonal caseb51.

More general statistical distributions of subunitary ma
ces carrying more information than the equal-a-priori prob-
ability ~2! can now be constructed usingdmsub(S) as a start-
ing point and writing

dP~S!5p~S!dmsub~S!. ~5!

In what follows we propose an information-theore
criterion to choosep(S). The information-theoretic entropy
S of the S-matrix distribution @12#, S@p(S)#
52*p(S)ln p(S)dmsub(S), is maximized subject to the con
straint of a given average strength of the absorption. Math-
ematically, this is expressed by the average departure f
unitarity of ourS matrices; we thus write the constraint as

^Tr SS†&5an, 0<a<1. ~6!

Thus,a50 corresponds to complete absorption anda51 to
lack of absorption. We find

dP(b)~S!5Ce2n Tr SS†
dmsub

(b) ~S!, ~7!
n

lly

m,
-

-

m

where the constantC and the Lagrange multipliern ensure
normalization and the fulfillment of the constraint~6!. The
limit of no absorption,a51, is attained when the Lagrang
multiplier n→2` and the distribution concentrates on th
unitarity sphere. The limit of complete absorption,a→0, is
attained whenn→1`: the distribution then becomes ad
function at the origin and there is no exit signal. The result
Eq. ~7!, a Laguerre ensemble for the variablesra

2 , coincides,
for strong absorption, with that obtained in Ref.@5# for the
diffusive waveguide and in Ref.@7# for cavities withN51.

The ‘‘ansatz’’ ~7! entails a number of properties and r
strictions. From Eqs.~4! and ~3!, and the properties o
dm(U) @13#, we see that, under the distribution~7!, the av-
erage ^S&50. Therefore, applications of the model~7!
should be restricted to cases whereprompt processes
are absent and sôS&50 @12,14,8#. We shall see at the
end of the paper that for uniform volume absorption~in
quantum mechanics, a constant potential2 iW throughout
the cavity! the S matrix can be obtained from that withou
absorption, evaluating it at the complex energyE1 iW, i.e.,
S(E1 iW). The so-called analyticity-ergodicity require
ments^Sa1b1

n1
•••Sapbp

np &5^Sa1b1
&n1

•••^Sapbp
&np are discussed

in Ref. @12# for unitary matrices: the same argument appl
here as well, and the necessity to fulfill them follows. In t
present case, their fulfillment follows from Eqs.~7!, ~4!, and
~3!, and the properties ofdm(U) @13#.

As a brief excursion into the situation when^S&Þ0, we
note that, asW increases,S(E1 iW)→^S&, which, in turn, is
the so called ‘‘opticalSmatrix,’’ that signals the presence o
prompt or direct processes@12,14,8#. As a consequence,S,
for large absorption, does not tend to zero, but to^S&. With
no absorption, the splittingS5^S&1Sf l describes the prob
lem in terms of two responses, associated with two disti
time scales: the prompt and the equilibrated one. It is th
expected that strong absorption will affect the former
sponse, that corresponds to short trajectories, much less
the latter one, that arises from long chaotic trajectories.

We analyze some of the consequences of the ansatz~7!
and, at the end, compare them with the results of rand
matrix-theory~RMT! numerical simulations.

a. The n51 case.This case, which describes a cavi
with one waveguide supporting only one open channel (S is
thus the reflection amplitude back to the only channel
have!, is, within our model~7!, independent of the universa
ity class b. Equation~3! for S in the polar representation
reduces toS5r expiu; r2 represents the reflection coeffi
cient R. The uniform weight~4! and the distribution~7! re-
duce to

dmsub~S!5rdrdu, dP~S!5Ce2nr2
rdrdu. ~8!

The R-probability density is

w~R!5De2nR, 0<R<1, ~9!

D andn being given by

D5
n

12e2n
, ^R&5

1

n
2

1

en21
5a. ~10!
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FIG. 1. Distribution of the reflection coefficientR for a cavity with one waveguide, supporting one channel:~left! in the presence of
strong absorption (^R&5a50.034);~right! for moderate absorption (^R&5a50.410).
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For weak absorption,a'1, n→2` and the distribution~9!
becomes strongly peaked aroundR51, i.e., the unitarity
circle, reducing to the one-sided delta functiond(12R) as
a→1. In the other extreme ofstrong absorption, n→1`,
a'1/n, D'1/a and

w~R!'^R&21e2R/^R&, ~11!

Rayleigh’s distribution, with the averagêR&5a.
b. The orthogonal case for arbitrary n. Using the results

of Ref. @13# we find, for the average of an individual~angu-
lar! transmission or reflection coefficient

^Tab&
(1)5^RaÞb&

(1)5a/~n11!5~1/2!^Raa&
(1). ~12!

We see the occurrence of the familiarbackward enhance
ment factor 2.For the second moments we find

^Tab
2 & (1)5^RaÞb

2 & (1)5 (
a51

n

^uU1au4uU2au4&0^ra
4& (1)

12 (
aÞg51

n

^uU1au2uU2au2uU1gu2uU2gu2&0^ra
2rg

2& (1).

~13!

The indices 1 and 2 indicate any pair of different channe
^•••&0 stands for an average with respect to the invari
measure of the unitary group@13#. For ^Raa

2 & (1) one sets the
two indices 1 and 2 equal.

For a two-waveguide problem with one channel in ea
waveguide theS matrix is two dimensional (n52N52).
Equation ~12! gives ^T& (1)5a/3,^R& (1)52a/3. Restricting
ourselves to the limit ofstrong absorption, a!1, the
Lagrange multipliern53/2a and we obtain

^T2& (1)'2@^T& (1)#2. ~14!

Although we have not calculated the statistical distribut
of T, result ~14! is consistent with the Rayleigh distributio
for the transmission coefficientT.

For a large number of channels,n52N@1, Eqs.~13! and
~12! give @13#
;
t

h

^Tab
2 & (1)5^RaÞb

2 & (1)'2
a2

n2
'2@^Tab&

(1)#2, ~15!

and similarly,^Raa
2 & (1)'2@^Raa&

(1)#2, the relation between
first and second moments for an exponential distribut
with the average value~12!, which becomes smaller as th
absorption increases.

For no absorption one reaches, in the limitn@1, a Ray-
leigh distribution forRaa . Reference@15# shows that, for the
COE (' being an approximation for largen)

w(1)~Raa!5C~12Raa!
(n23)/2'^Raa&

21e2Raa /^Raa&.

c. The unitary case for arbitrary n. In the unitary case, the
statistical properties of a transmission coefficient is identi
to that of a diagonal or off-diagonal reflection coefficien
The following equations are thus written forTab . We find,
for its average,̂ Tab&

(2)5a/n; we have used the result@13#
^uU1au2&051/n. The difference in expectation values b
tween the two symmetry classes is thus

^Tab&
(1)2^Tab&

(2)52a/@n~n11!#. ~16!

FIG. 2. Distribution of the transmission coefficientT for a cavity
with two waveguides, each supporting one open channel, in
presence of strong absorption (a5.049).
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For the second moment ofTab we have

^Tab
2 & (2)52(

ag
^uU1au2uU1gu2&0^uVa2u2uVg2u2&0^ra

2rg
2&

5@2/~n11!2#$@~n21!/n#^r1
2r2

2& (2)1~2/n!^r1
4& (2)%.

~17!

We have used the result@13# ^uU1au2uU1gu2&05(1
1dag)/@n(n11)#.

For a two-waveguide problem with one channel in ea
waveguide (n52N52) we havê T& (2)5a/2. In the limit of
strong absorption, a!1, the Lagrange multipliern52/a
and we obtain a relation like~14!. For a large number o
channelsn52N@1, Eq. ~17! gives a similar relation, now
for Tab , which is again consistent with Rayleigh’s distrib
tion.

For CUE~i.e., no absorption! one reaches a Rayleigh dis
tribution for n@1. Pereyra and Mello@15# find the distribu-
tion of a single transmission coefficient to be

w~Tab!5C~12Tab!
n22'^Tab&

21e2Tab /^Tab&. ~18!

d. Comparison with numerical simulations. Some of our
predictions are compared below with RMT numerical sim
lations forb51. TheS matrices are constructed asS(E)5
2@ I n2 iK (E)#21@ I n1 iK (E)#, with Kab(E)
5(lglaglb /@El2E# and (I n)ab5dab (a,b51, . . . ,n).
The El’s are generated from an ‘‘unfolded’’ zero-center
GOE@16# with average spacingD. Thegla’s are statistically
independent, real, zero-centered Gaussian random varia
At E50, ^Sab&52@11p^gla

2 &/D#21@12p^gla
2 &/D#dab ,

and we requirê S&50. In the quantum case, addition of
constant imaginary potential2 iW inside the cavity makes
the El’s complex and equal toEl2 iW ~see also Ref.@7#!.
This is equivalent to evaluating the above expressions at
complex energyE1 iW, which makesS(E1 iW) subuni-
tary. Although Eq.~7! gives the probability distribution for
w

h

-

les.

he

the full S matrix and arbitraryn, we only analyze below
individual ~angular! reflection and transmission coefficient
for n51,2.

Figure 1 shows forn51 the results of the RMT numerica
simulations ~as histograms!, compared with the presen
model for the corresponding value ofa ~continuous curves!.
For strong absorption the model works very well, the agr
ment with Rayleigh’s law being excellent, while for mode
ate and weak absorptions the model fails.

Figure 2 shows the distribution of the transmission co
ficient T obtained from a RMT simulation forn52. The
agreement with the Rayleigh distribution with the centro
^T&5a/3 is excellent;̂ R& was also checked and found t
agree with 2a/3.

That individual transmission and reflection coefficients
tain a Rayleigh distribution for strong absorption can be u
derstood as follows.Sab(E1 iW) coincides@8,12# with the
energy average ofSab(E) evaluated with a Lorentzian
weighting function of half-widthW. If Gcorr is the correla-
tion energy, W can be thought of as containing;m
5W/Gcorr independent intervals. Ifm@1, by the central-
limit theorem the real and imaginary parts ofSab attain a
Gaussian distribution, anduSabu2 an exponential distribution
This seems to be the situation captured by the maximu
entropy approach.

In summary, the results presented in this paper indic
that wave scattering through classically chaotic cavities
the presence of strong absorption can be described in te
of an information-theoretic model.
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